IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 6859-6876

Exact solutions for magneto-electro-elastic
laminates in cylindrical bending

E. Pan **, P.R. Heyliger °

& Department of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA
b Department of Civil Engineering, Colorado State University, Fort Collins, CO 80523, USA

Received 5 August 2003; received in revised form 5 August 2003

Abstract

Analytical solutions are derived for the cylindrical bending of multilayered, linear, and anisotropic magneto-electro-
elastic plates under simple-supported edge conditions. We construct the general solution in terms of a simple formalism
for any homogeneous layer, from which any physical quantities can be solved for the given boundary conditions. For
multilayered plates, we derive the solution in terms of the propagator matrices. A special feature of cylindrical bending,
which distinguishes itself from the three-dimensional plate problem, is that the associated eigenvalues for any homo-
geneous layer are independent of the sinusoidal mode, and thus need to be solved only once. Typical numerical ex-
amples are also presented for a piezomagnetic plate, a two-layered piezoelectric/piezomagnetic plate, and a four layered
piezoelectric/piezomagnetic plate, with different span-to-thickness ratios. In particular, the piezoelectric and piezo-
magnetic fields show certain interesting features, which give guidance on the development of piezoelectric/piezomag-
netic thin-plate theories. Furthermore, it is shown that the variations of the elastic, electric, and magnetic quantities
with thickness depend strongly upon the material property and layering, which could be useful in the analysis and
design of smart composite structures with sensors/actuators.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayered smart structures made of piezoelectric and piezomagnetic materials offer certain potential
performance advantages over conventional composites, largely due to their unique capability of converting
the system energy from one type to the other (among magnetic, electric, and mechanical energies) (Ber-
lingcourt et al., 1964; Landau and Lifshitz, 1984; Harshe et al., 1993; Avellaneda and Harshe, 1994; Nan,
1994; Benveniste, 1995). While various numerical studies have been carried out to assist the design of
composite laminates consisted of elastic and piezoelectric materials (Pagano, 1969, 1970; Tzou, 1993; Tzou
and Tseng, 1990; Tzou and Ye, 1996; Bisegna and Maceri, 1996; Heyliger and Brooks, 1996; Lee and Jiang,
1996; Heyliger, 1997; Lee and Saravanos, 1997, 2000; Vel and Batra, 2000), investigation for the
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corresponding multilayered piezoelectric and piezomagnetic structures has only been started recently.
Under the assumption of static deformation, Pan (2001) derived an exact closed-form solution for the
multilayered piezoelectric and piezomagnetic plates based on the quasi-Stroh formalism and the propagator
matrix method. It was observed that under a surface mechanical load, the piezoelectric (piezomagnetic)
fields could be substantially enhanced in the piezoelectric (piezomagnetic) layer (Pan, 2001). More recently,
Pan and Heyliger (2002) solved the corresponding vibration problem where they identified several modes
that are purely elastic and independent of the piezoelectric/piezomagnetic coupling.

In this paper, we apply the analytical method to the static bending analysis of anisotropic, magneto-
electro-elastic, and multilayered plates with simply supported edges. First, we derive the general solution
for a homogeneous plate in terms of the Stroh-type formalism. A very distinguishing feature between the
two-dimensional (2D) bending and three-dimensional (3D) deformation is that the eigenvalues for
the homogeneous plate in the 2D bending need to be solved only once since they are independent of the
eigenmode p (to be defined later). This is particularly useful when the solution is expressed in terms of the
Fourier series and then summed together (Timoshenko and Woinowsky-Krieger, 1987; Bisegna and Ma-
ceri, 1996). To handle multilayered plates, the propagator matrix method (Gilbert and Backus, 1966; Pan,
1991, 1997) is again employed with which the corresponding multilayered solution has an elegant and
simple expression.

Numerical examples are presented for different span-to-thickness ratios and for three representative
plates: a single homogeneous magnetostrictive plate made of CoFe,O,, a two-layered plate of equal
thickness with magnetostrictive CoFe,O, in the top layer and piezoelectric BaTiO; in the bottom layer, and
a four-layered plate Orth—45/BaTiO3/CoFe,04 /Orth+45 where Orth =45 are the orthotropic piezoelectric
PZT-4 rotated £45 degrees with respect to the global x-axis. When approaching the thin-plate limit, we
observed that while the behaviors of the elastic fields (elastic displacements and stresses) follow those in the
purely elastic plate, the electric and magnetic fields showed certain different and new features that require
particular consideration. Specifically, we find that the variation along the thickness-direction for the electric
and magnetic potentials is usually of polynomial behavior with the order higher than that for the elastic
displacements. Similarly, the electric displacement and magnetic flux fields are higher order polynomial
functions of the thickness coordinates than those of the stresses. This implies that in the development of a
thin-plate theory for the magneto-electro-elastic structure, a high order polynomial is needed for the electric
and magnetic quantities. Finally, we have observed that different lay-ups result in totally different responses
on the elastic, electric, and magnetic quantities. These general characteristics could be useful in the analysis
and design of magneto-electro-elastic composite laminates.

2. Problem description and governing equations

We consider an anisotropic, magneto-electro-elastic, and N-layered rectangular plate with a finite hori-
zontal dimension / in the y-direction. The plate is infinite in the x-direction and the thickness is in the
(vertical) z-direction with a total thickness 4. We assume that its two edges are simply supported as
described by the end conditions on the laminate. A Cartesian coordinate system (x,y,z) = (x;,xa,x3) is
attached to the plate in such a way that its origin is at the left-bottom corner and plate is in the positive
z region. Layer j is bonded by the lower interface z; and the upper interface z;;, with thickness
h; =z — z;. It is obvious that z; = 0 and zy; = h. Along the interface, the extended displacement and
traction vectors (to be defined later) are assumed to be continuous. On the top and bottom surfaces of the
layered plate, suitable boundary conditions can be described as will be discussed later on.

We start with a linear, anisotropic, and magneto-electro-elastic solid for which the coupled constitutive
relation can be written as (Harshe et al., 1993; Nan, 1994; Benveniste, 1995; Pan, 2001)
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0; = Cyyy — eEr — qiiHy
D; = ey + ek + dyHy (1)
B; = qiyy + dinEy + pyH;

where a;, D;, and B; are the stress, electric displacement, and magnetic induction (i.e., magnetic flux), re-
spectively; y;, E; and H; are the strain, electric field and magnetic field, respectively; Cj;, ¢; and y;; are the
elastic, dielectric, and magnetic permeability coefficients, respectively; e;;, g;;, and d;; are the piezoelectric,
piezomagnetic, and magnetoelectric coefficients, respectively. It is apparent that various uncoupled cases
can be reduced from Eq. (1) by setting the appropriate coupling coefficients (e;;, ¢;;, and d;;) to zero.

For a monoclinic material with poling direction coincident with the x; (or z) axis to be considered in this
paper, the material constant matrices of Eq. (1) are expressed by

Cih Cp Csz 0 0 Cyp 0 0 e 0 0 gxn
Cn Cy 0 0 Cx 0 0 exn 0 0 g»
Csz 0 0 Cs 0 0 ey 0 0 g3
C = s = s = 2
€] Cy Cyi5s O €l ey ey 0 ] qis qu 0 @)
Sym Cs 0 e;s es 0 915 g5 0
C66 0 0 €36 0 O 436
en e 0 dy dpo 0 M1 i O
el=|en en 0|, [d=|do do 0|, W= |y upy O 3)
0 0 €33 0 0 d33 0 0 33

The general strain (using tensor symbol for the elastic strain y,,)-displacement relation is
7y = 0.5(ui; + ujy)
E; = _¢,ia H; = —l//‘,»

where u;, ¢, and y are the elastic displacement, electric potential, and magnetic potential, respectively.
Assuming absence of the body force, electric charge, and current, the equilibrium equations are

0, =0; D;;=0; B;;=0 (5)

)

3. General solutions

We seek the general two-dimensional solution of the extended displacement u(y,z) in the following form

23] ap Cos py
Uy dap COS py
u= |us | =e| azsinpy (6)
¢ assinpy
v as sin py

where s is the eigenvalue and a; (i = 1-5) the corresponding eigenvector to be determined, and
p=nn/l (7)

with »n being a positive integer.
Substitution of Eq. (6) into the strain—displacement relation (4) and subsequently into the constitutive
relation (1) yields the extended traction vector
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013 by cos py
023 by cos py
t= |03 | =pe”™ | bysinpy (8)
D3 b4 sinpy
B3 b5 sinpy
Introducing two vectors
a= [alaa27a37a4aa5]t7 b= [bl,b27b37b47b5]t (9)
we then find that vector b is related to a by the following relation
1
b:(—R‘+sT)a:—E(Q+SR)a (10)
where the superscript ‘t” denotes matrix transpose, and
[0 0 Csx e g3 Css  Cys 0 0 0
0 0 Cy en qn (om 0 0 0
R = —C45 —C44 0 0 0 5 T = C33 €33 q33 (11)
—es —ey 0 0 0 Sym —&3 —ds;
| —g2s —qu 0 0 0 — s
[—Cg¢¢ —Co 0 0 0
—Cy 0 0 0
0= —Cy —exn —qu (12)
Sym &n dy
L Hao

The in-plane stresses and electric and magnetic displacements can be found using the strain—displacement
relation (4), Egs. (6) and (8), which are given below as

011
012

where

C7_

p epSZ

_C16
—Ces
—Cx
€158
€758
q158

L 9258

[ cisinpy ]

¢y sin py
¢3 sin py
€4 COSpy
¢5COS py
€6 COS py

| €7 COSpy |

—Cp
—Cys
—Cp
€148
€248
q14S
4248

C13S
C3(,S
C23S
€14
€24
qi14
924

es31s
€365
€328
—é12
—é2
_d12
_d22

(13)
aj
a
as (14)
ay
as

Satisfaction of Eq. (5) yields the following eigenproblem for the eigenvalue s and the corresponding ei-

genvector a,
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[Q+s(R+R)+5Tla=0 (15)

where R = —R".

It is noted that Eq. (15), derived for a simply supported plate, resembles the Stroh formalism (Stroh,
1958; Ting, 1996). However, their solution structures are different because of the slightly different features
of the involved matrices (Pan, 2001).

To solve the eigenproblem (15), we can first recast it, with aid of Eq. (10), into a 10x 10 linear eigen-
system

o[-

where
~T'R T
N = 17
[—Q+ RT'R —RTI} (17)
It has been proved (Pan, 2001) that if s is an eigenvalue of Eq. (16), so is —s. Therefore, we can assume that
the first five eigenvalues have positive real parts (if the real part is zero, then we pick the eigenvalue with
positive imaginary part) and the last five have opposite signs to the first five. We distinguish the corre-
sponding 10 eigenvectors by attaching a subscript to @ and b. Then the general solution for the extended

displacement and traction vectors (of the z-dependent, y-independent factor) are derived as

u _ Al AZ S Z Kl
- Eelk] &
where
Al - [a1)a23a37a43a5]7 A2 = [a67a77a83a97a10]
Bl = [bl7b27b37b47b5]7 BZ - [b67b77b87b97b10] (19)

<eps*z> — diag[epslz, epszz’ ep,v;z’ epsg‘z7 epS5Z’ e—ps]z7 e—mzz7 e—ps;z’ e—pS4z, e—psg}

and K, and K, are 5x 1 column matrices to be determined.

We note a distinct difference between the cylindrical deformation here and the rectangular plate de-
formation studied in Pan (2001): While the ten roots in the rectangular plate case depend on the defor-
mation modes (p, q), for the cylindrical case, they are independent of the model parameter p defined in (7).
In other words, the roots in the cylindrical case depend only on the material properties. This is particularly
advantageous when solving a general boundary value problem where the given loading will be expressed in
terms of the Fourier series, and the solution is the sum of each Fourier term.

With Eq. (18) being served as a general solution for a homogeneous and magneto-electro-elastic plate,
the solution for the corresponding layered plate can be derived using the continuity conditions along the
interface and the boundary conditions on the top and bottom surfaces of the plate. In so doing, a system of
linear equations for the unknowns can be formed and solved (Heyliger and Brooks, 1996; Heyliger, 1997).
For structures with relatively large numbers of layers (up to a hundred layers), however, the system of linear
equations becomes very large, and the propagator matrix method developed exclusively for layered
structures can be conveniently and efficiently applied (for a brief review, see Pan, 1997). We discuss this
approach in the next section.
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4. Propagator matrix for a layered system

Since the matrix N, defined in Eq. (17), is not symmetric, the eigenvectors of Eq. (16) are actually the
right ones. The left eigenvectors are found by solving the following eigenvalue system

N'y=in (20)
It is known that if s and [a, ] are the eigenvalue and eigenvector solutions of Eq. (16), then /1 = —s and
n = [—b, a]' are the corresponding solutions of Eq. (20). The orthogonality of the left and right eigenvectors
yields the following important relation:
t t
,ltgz A21 Ay A, _ |1 0 (21)
B -4'||B B 0 1
where I is a 5x 5 identical matrix, and the eigenvectors have been normalized according to
~BA, + AB, =1 (22)

Eq. (21) resembles the orthogonal relation in the Stroh formalism (Ting, 1996) and provides us a simple
way of inverting the eigenvector matrix, which is required in forming the propagator matrix.

Let us assume that Eq. (18) is a general solution in the homogeneous layer j, with top and bottom
boundaries at z and 0 (locally). Letting z = 0 in Eq. (18) and solving for the unknown column matrices, we

find
-1 t t
K] _ A1 Az u _ —Biz Azt u (23)
K, B, B, t, B, A ]|t],
The second equation follows from Eq. (21). Therefore, the solution in the homogeneous layer j at any z can
be expressed by that at z =0, i.e.,

R
where Z
ro -5 gl m A 3

is called the propagator matrix (Gilbert and Backus, 1966; Pan, 1997).
The propagating relation (24) can be used repeatedly so that we can propagate the physical quantities
from the bottom surface z = 0 to the top surface z = & of the layered plate. Consequently, we have

4] = PPt papn 4] (26)

where h; = z;; — z; is the thickness of layer j and P; the propagator matrix of layer ;.

Table 1
Material coefficients of the magnetostrictive CoFe;O4 (Cj; in 10° N/m?, g;; in N/(Am), ¢, in 107 C*/(Nm?), and p; in 1075 N's*/C?)
C‘11 = CZZ CIZ Cl3 = C23 C33 C44 = CSS C66 = OS(CII - Cl'_’)
286 173 170.5 269.5 453 56.5
q31 = 43 q33 924 = {15
580.3 699.7 550
&1l = & £33 Hip = M 33

0.08 0.093 =590 157
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Fig. 1. (a) Variation of elastic displacement component u, (in m) along the thickness direction of the single magnetostrictive CoFe,04
plate for four different span-to-thickness ratios S. (b) Variation of elastic displacement component u, (in m) along the thickness
direction of the single magnetostrictive CoFe,0, plate for four different span-to-thickness ratios S.
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Fig. 2. Variation of magnetic potential  (in C/s) along the thickness direction of the single magnetostrictive CoFe, O, plate for four
different span-to-thickness ratios S.
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Fig. 3. (a) Variation of stress component o, (in N/m?) along the thickness direction of the single magnetostrictive CoFe,0y
plate for four different span-to-thickness ratios S. (b) Variation of stress component o,, (in N/m?) along the thickness direc-
tion of the single magnetostrictive CoFe,O,4 plate for four different span-to-thickness ratios S. (¢) Variation of stress component
6,. (in N/m?) along the thickness direction of the single magnetostrictive CoFe,Oy4 plate for four different span-to-thickness
ratios S.

Eq. (26) is a surprisingly simple relation and, for given boundary conditions, can be solved for the
unknowns involved. In the following examples, we assume that the bottom surface (z = 0) is traction free
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Fig. 4. (a) Variation of magnetic flux component B, (in Wb/m?) along the thickness direction of the single magnetostrictive CoFe,0,
plate for four different span-to-thickness ratios S. (b) Variation of magnetic flux component B, (in Wb/m?) along the thickness direction
of the single magnetostrictive CoFe,0O, plate for four different span-to-thickness ratios S.

Table 2
Material coefficients of the piezoelectric BaTiO; (Cy; in 10° N/m?, e;; in C/m?, ¢; in 10~° C*/(Nm?), and g;; in 10¢ N's?/C?)
Cn=Cxn Ci Ci3=0Cy Cy Cyy = Css Ces = 0.5(C11 — C1p)
166 77 78 162 43 44.5
€31 = €3 €33 €4 = €5
-4.4 18.6 11.6
&1l = & €33 Hip = My a3
11.2 12.6 5 10

(i.e., the elastic traction and the z-direction electric displacement and magnetic induction are zero) and that
on the top surface (z = %), we give

t(H) = [0,0, 5 sin py, 0, 0]' (27)

5. Numerical examples

In the examples presented below, the span-to-thickness ratios S = I/h (h = 1m) are equal to 2.5, 5, 10,
and 20. A sinusoidal load is applied at the top surface z = 4 (in meter), as given by Eq. (27) with gy = 1 N/
m? Furthermore, 7 in Eq. (7) is fixed at 1 and y is at S/4. To study the thin-plate limit, we follow Pagano
(1969, 1970) to normalize u, and u, by dividing S°, u, by multiplying 100/S*, 6, 7,,, and o, by dividing S,
and o), and o,. by dividing S. Furthermore, the piezoelectric and piezomagnetic fields are also normalized,
with ¢ and  being divided by S, D, D,, B,, and B, divided by S. It is noted that in so doing all the physical
quantities are still dimensional with the elastic displacement in m, stress in N/m?, electric potential in V,
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Fig. 5. (a) Variation of electric potential ¢ (in V) along the thickness direction of the two-layered F/B plate for four different span-to-
thickness ratios S. (b) Variation of magnetic potential y (in C/s) along the thickness direction of the two-layered F/B plate for four
different span-to-thickness ratios S.
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Fig. 6. (a) Variation of electric displacement component D, (in C/m?) along the thickness direction of the two-layered F/B plate for four
different span-to-thickness ratios S. (b) Variation of electric displacement component D. (in C/m?) along the thickness direction of the
two-layered F/B plate for four different span-to-thickness ratios S.
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magnetic potential in C/s, electric displacement in C/m? and magnetic flux (or induction) in Wb/m?. We also
remark that results from our analytical model have been compared with those from a continuum-based
discrete-layer plate theory with excellent agreement being obtained (Heyliger et al., 2002).

Example 1. The first example is a single layer model, which is made of the magnetostrictive CoFe,0,. The
material properties of the layer are given in Table 1 (Pan, 2001).

The variation of the displacement components u, and u, along the thickness direction for different span-
to-thickness ratios S are shown in Fig. 1a and b. As can be clearly observed, while u, is a linear function of z
in the thin-plate limit (S = 20), u, is constant, demonstrating the general features for the purely elastic thin-
plate theory. However, the magnetic potential is a quadratic function of z, as shown in Fig. 2.

The stress components are plotted in Fig. 3a—c, which show, in the thin-plate limit, a linear variation
along the z-direction for the normal stress components oy, and g,, (Fig. 3a and b), and a quadratic variation
for o, (Fig. 3c). Again, these thin-plate stress distribution features are the same for the purely elastic case.
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F F
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N N
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B B
0.4— 1 — 0.4 — —
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By Bz

Fig. 7. (a) Variation of magnetic flux component B, (in Wb/m?) along the thickness direction of the two-layered F/B plate for four
different span-to-thickness ratios S. (b) Variation of magnetic flux component B, (in Wb/m?) along the thickness direction of the two-
layered F/B plate for four different span-to-thickness ratios S.

Table 3
Material coefficients of the orthotropic piezoelectric PZT-4 (C;; in 10° N/m?, e;; in C/m?, g; in 10~ C*/(N'm?)
Cu Cy Cy Cy Css Ces
238 23.6 10.6 2.15 4.4 6.43
Ci Ci Gy el el = én
3.98 2.19 1.92 0.110625 0.106023

el €3 €3 €y = €5
-0.13 -0.14 -0.28 -0.01
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The distributions of the magnetic flux components, however, are different. While B, is quadratic in z (Fig.
4a), B, is cubic in z (Fig. 4b). Therefore, in the thin-plate theory for the magneto-electro-elastic laminate,
the magnetic and electric quantities would generally require a high-order polynomial approximation.
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Fig. 8. (a) Variation of elastic component u, (in m) along the thickness direction of the four-layered +45/F/B/—45 plate for four different
span-to-thickness ratios S. (b) Variation of elastic component u, (in m) along the thickness direction of the four-layered +45/F/B/-45
plate for four different span-to-thickness ratios S. (¢) Variation of elastic component u. (in m) along the thickness direction of the four-
layered +45/F/B/-45 plate for four different span-to-thickness ratios S.
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Fig. 9. (a) Variation of electric potential ¢ (in V) along the thickness direction of the four-layered +45/F/B/—45 plate for four different
span-to-thickness ratios S. (b) Variation of magnetic potential i (in C/s) along the thickness direction of the four-layered +45/F/B/—45
plate for four different span-to-thickness ratios S.

Example 2. The second example is a two-layered plate made of piezoelectric BaTiO; with material pro-
perties given in Table 2 (Pan, 2001) and magnetostrictive CoFe,O,4. The piezoelectric BaTiO; is in the
bottom layer (0 < z < 0.54) and the magnetostrictive CoFe,0y is in the top layer (0.54 < z < h). Starting
from the top, this two-layered plate is named as F/B plate.

Shown in Fig. 5a and b are, respectively, the variations of the electric and magnetic potentials along the
z-direction for different span-to-thickness ratios S. It is interesting that, in the thin-plate limit, the electric
(magnetic) potential in the thickness direction is nearly constant in the magnetostrictive (electric) layer, and
is quadratic in the electric (magnetostrictive) layer. Similarly, the electric displacement components are
either constant or linear in the magnetostrictive layer but are quadratic in the electric layer (Fig. 6a and b).
An opposite behavior is observed for the magnetic flux components as shown in Fig. 7a and b, where they
are quadratic functions of z in the magnetostrictive layer but constant or linear functions of z in the electric
layer. We finally remark that the variation of the displacement components u, and . along the thickness
direction for different span-to-thickness ratios S is similar to the single plate case as shown in Fig. 1a and b.

Example 3. In the third example, the plate is made of four layers of equal thickness with each having a
thickness of 0.254. The stacking sequence from the top to bottom is Orth+45/CoFe,0,/BaTiO;/Orth—45, or
+45/F/B/—-45 for simplicity. While BaTiO3; and CoFe,0,4 are the materials used in Examples 1 and 2,
materials Orth+45 are from PZT-4 by rotating £45 degrees with respect to the x-axis. The properties of the
orthotropic piezoelectric PZT-4 (Heyliger, 1997) are given in Table 3.

Fig. 8a—c show the variations of the elastic displacements along the z-direction for different span-to-
thickness ratios S. As can be observed, they are either constant or linear functions of the thickness coor-
dinate z.

While Fig. 9a shows the variation of the electric potential along the thickness direction, Fig. 9b plots that
for the magnetic potential. A special feature is noticed for the variation of the electric potential in the top
Orth+45 layer where it experiences a very large gradient from the top surface to the interface (Fig. 9a).



6872 E. Pan, P.R. Heyliger | International Journal of Solids and Structures 40 (2003 ) 6859-6876
Sl L L L BRI BRI 2 B S 1
+45 +45
0.75 0.75
F F
S 050 I 0.50
B B
Gy S = 2.5
——=*S=5 | | 0.25
e, S = 10
b, S = 20 _45
(a)
1 | 1 | | 1 | 1 0.00 1 I I 1 I
03 0.2 0.1 0 0.1 0.2 0.3 0.4 0.75 05 -0.25 0
sigma_xx sigma_yy
1.00 T T T T
+45
0.75
ey S = 2 5
< ¢—— S=5 F
N 050 P S = 10
e——leed. S = 20
B
0.25
Cc
© -45
0.00 1 | 1 | 1 | 1
0.1 0.2 0.3 05
sigma_yz

0.75

Fig. 10. (a) Variation of stress component o, (in N/m?) along the thickness direction of the four-layered +45/F/B/—45 plate for four
different span-to-thickness ratios S. (b) Variation of stress component a,, (in N/m?) along the thickness direction of the four-layered
+45/F/B/-45 plate for four different span-to-thickness ratios S. (c) Variation of stress component o,. (in N/m?) along the thickness
direction of the four-layered +45/F/B/-45 plate for four different span-to-thickness ratios S. (d) Variation of stress component g, (in
N/m?) along the thickness direction of the four-layered +45/F/B/—45 plate for four different span-to-thickness ratios S. (¢) Variation of
stress component g, (in N/m?) along the thickness direction of the four-layered +45/F/B/-45 plate for four different span-to-thickness

ratios S.

The variations of the stress components along the thickness direction are shown in Fig. 10a—e. It is
clearly observed, they are either a linear function of z (Fig. 10a, b, d, and e for o, 0,,, 0. and o,,) or a
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Fig. 10 (continued)

quadratic function of z (Fig. 10c for ¢,.). Again, these features are consistent with those observed from the
purely elastic composite plates.

Finally, Fig. 11a—c and Fig. 12a—c show the variations of the electric displacement and magnetic flux. As
can be seen, their variations are similar to those in the two-layered plate presented in Example 2. That is,
the electric displacement has higher order variation in the electric layer than that in the magnetic layer (Fig.
11a—c). On the other hand, the magnetic flux has higher order variation in the magnetostrictive layer than
that in the electric layer (Fig. 12a—c).

6. Conclusions

In this paper, we have derived an analytical solution for the static bending of an anisotropic, magneto-
electro-elastic, and multilayered plate with simply supported edges. Similar to the analysis for the corre-
sponding 3D plate problem, the homogeneous solutions are expressed in terms of the simple quasi-Stroh
formalism and the solution in the multilayered plate in terms of the propagator matrix method. It is noted,
however, while for the 3D plate case, the eigenvalues of the homogeneous plate depend on the eigenmode
pair (p, q), for the 2D cylindrical bending, the eigenvalues are independent of the eigenmode p. Thus the
homogeneous solution for each layer needs to be solved only once, independently of the eigenmode p. This
is particularly efficient when superposing all the sinusoidal responses together as in the Fourier series
summation.

Numerical examples are presented for three representative plates: a single homogeneous magnetostric-
tive plate made of CoFe,0,, a two-layered plate made of magnetostrictive CoFe,O, in the top layer and
piezoelectric BaTiOj; in the bottom layer, and a four-layered plate Orth+45/CoFe,04/BaTiO;/Orth—45. For
different span-to-thickness ratios, we have observed that, in the thin-plate limit, while the elastic fields
(elastic displacements and stresses) follow those in the purely elastic plate, the electric and magnetic fields
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Fig. 11. (a) Variation of electric displacement component D, (in C/m?) along the thickness direction of the four-layered +45/F/B/—45
plate for four different span-to-thickness ratios S. (b) Variation of electric displacement component D, (in C/m?) along the thickness
direction of the four-layered +45/F/B/—45 plate for four different span-to-thickness ratios S. (¢) Variation of electric displace-
ment component D, (in C/m?) along the thickness direction of the four-layered +45/F/B/—45 plate for four different span-to-thickness
ratios S.

showed very different features. In particular, their variations along the thickness direction are usually high-
order polynomial functions of the thickness coordinate. In other words, in the development of a thin-plate
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Fig. 12. (a) Variation of magnetic flux component B, (in Wb/m?) along the thickness direction of the four-layered +45/F/B/—45 plate
for four different span-to-thickness ratios S. (b) Variation of magnetic flux component B, (in Wb/m?) along the thickness direction of
the four-layered +45/F/B/—45 plate for four different span-to-thickness ratios S. (c) Variation of magnetic flux component B, (in Wb/
m?) along the thickness direction of the four-layered +45/F/B/—45 plate for four different span-to-thickness ratios S.

theory for the magneto-electro-elastic plate, a high-order polynomial is needed for the electric and magnetic
quantities. Finally, we have observed that different lay-ups could predict totally different responses on the
elastic, electric, and magnetic quantities. These general features should be useful in the analysis and design
of magneto-electro-elastic composite laminates.
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